




Why normalize database?

 Remove data redundancy…

 …and use less storage

 More extensibility without changing existing schema

 Easier to deploy database changes without downtime

 Backwards compatibility!

 Tables are smaller and more readable

 More data integrity and consistency









We don’t normalize databases because…

 It’s to much work / I don’t have time for this

 “I’m not DBA”

 I’ll need shitload of JOINs, querying is harder and queries are more difficult to 
read

 Storage is cheap

 It’s harder to maintain performance









Person Entity

 Id

 Name

 Last name



Person Entity

 Id - unique

 Name – can repeat itself

 Last name – can repeat itself



Person Entity

 Id

 Name – separate lookup table

 Last name – separate lookup table

























View or function 'dbo.Vw_Person' is not updatable because the modification affects 

multiple base tables.























Anchor Modeling
maintain highly normalized data model that 

can be changed anytime



Rafał Hryniewski

@r_hryniewski

fb.me/hryniewskinet

Senior .NET Dev

Blogger

Speaker

Community leader

https://hryniewski.net

rafal@hryniewski.net





Agenda

 Evolving highly normalized schema in traditional way.

 Glossary.

 How does it look?

 Anchors, ties and other modeling constructs.

 Features



Glossary

 Normalization – structuring relational database to minimize data redundancy and 
improve data integrity

 Temporal Data – data with relation to time in terms of validity time, transaction 
time and/or decision time





Anchor Modeling is

 Database modeling technique

 Agile

 Can work with temporal data

 Easy

 Has graphic UI modeling tool

 Uses four modeling contructs: anchors, attributes, ties and knots 



Databases created with Anchor Modeling are

 Mostly in 6th normal form

 Easy to expand

 Temporal (if you want it to be)

 Ready to work with in no time

 Can be deployed with zero downtime





Requirements

 3 entities – Person, Company, Post

 Person should have Name, Last Name and Date of Birth

 Company should have Name

 Post should have Title, Content and Creation Date



Requirements

 3 entities – Person, Company, Post

 Person should be able to be friend with other Person

 Person should be able to be employed in Company

 Person and Company are able to create Posts





















Anchor

 Represents business entity





Attribute

 Is property of an anchor

 Mnemonic must be unique in scope of an anchor

 Can be knotted





Knot

 Used when attribute is repetitive for many entities ie. Category

 Has it’s own identity key (ie. CategoryId)

 Think of it as dictionary table

 Linked with anchor through attribute





Tie

 Models relationships between anchors

 Has roles (ie. “knows”, “is owned by”)









How many lines was required to build 
above sample model?

 4047















Anchor



Anchor



Attribute



Attribute



Knot



Knot



Tie



Tie





Temporal data

 Any data can be historized

 You can record changes at specified point of time (ie. Price year ago)





Change request

• Post Title should be versioned

• Post Content should be versioned













Temporal perspectives

Based on views/functions with prefixes:

 n / Current –now

 l / Latest – latest (can include future data)

 p / Point – data in specified point in time

 d / Difference – data changes in two points in time









Evolving your schema

 Highly iterative (Modifying already deployed tables can cause errors)

 Does not touch existing data

 Previous schema is always subset of new one

 Deployments can be made without any downtime

 It’s easy to maintain backwards compatibility within an app





Table elimination

 It’s possible because of higly normalization and relational structure

 In short “if you don’t need it – don’t touch it”

 Requires explicit select statements













Cons

 Using it in your apps will require some skill

 It’s niche

 Not everything works in Azure SQL

 Modifications by hand are not easy



Resources

 www.anchormodeling.com



Slides

bit.ly/rh-anchor



Questions?



@r_hryniewskifb.me/hryniewskinet

Try it – at home


